Leaf vein segmentation using Odd Gabor filters and morphological operations
نویسندگان
چکیده
Leaf vein forms the basis of leaf characterization and classification. Different species have different leaf vein patterns. It is seen that leaf vein segmentation will help in maintaining a record of all the leaves according to their specific pattern of veins thus provide an effective way to retrieve and store information regarding various plant species in database as well as provide an effective means to characterize plants on the basis of leaf vein structure which is unique for every species. The algorithm proposes a new way of segmentation of leaf veins with the use of Odd Gabor filters and the use of morphological operations for producing a better output. The Odd Gabor filter gives an efficient output and is robust and scalable as compared with the existing techniques as it detects the fine fiber like veins present in leaves much more efficiently.
منابع مشابه
Classification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet
Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...
متن کاملIntegrated approach to texture segmentation using multiple Gabor filters
This paper presents an integrated approach using multiple Gabor filters for the segmentation of multi-textured images. The approach includes both the design of the constituent Gabor filters and the design of the classifier and postprocessing. The classifier uses a mixture density to reduce localization error at texture boundaries, and the postprocessing uses morphological operators to remove sp...
متن کاملP14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering
Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1206.5157 شماره
صفحات -
تاریخ انتشار 2012